

Bedienungsanleitung HYDROVAR[®]

HV 1.1-HV 1.2

mit RS 485 - Schnittstelle

v 2012/03A 771079211

Manual HV1_1-1_2-DE

DEUTSCH

Inhaltsverzeichnis

1	WICHTIGE SICHERHEITSHINWEISE	5
2	ANLAGENSCHEMA	7
3	MEMBRANSPEICHER	8
4	MESSUMFORMER	10
	4.1 Drucktransmitter	10
	4.2 Differenzdrucktransmitter 11	
5	TECHNISCHE DATEN - FREQUENZUMFORMER UND ALLGEMEINE DATEN	11
	5.1 Masse und Gewicht	12
6	HYDROVAR MONTAGE	13
	6.1 Montieren des Hydrovars auf einer Pumpe	13
	6.1.1 Gelieferte Komponenten	13
	6.1.2 Mechanische Montage	14
	6.1.3 Montage des Thermistors	17
	6.1.4 Montieren des Drucktransmitters	18
	6.2 Elektrische Installation und Verdrahtung	19
	6.2.1 Schutzarten	19
	6.2.2 Verkabelung des Hydrovars mit dem Motor	19
	6.2.3 Steuerung	22
	6.2.4 Steuerklemmen	22
	6.3 Klebeschild	24
7		25
8	MOGLICHE SIGNALE DER LED AN DER HYDROVAR-REGELEINHEIT	26
9	BEDIENUNG IM HAUPTMENÜ	27
10	VERBINDUNG DES PROGRAMMIERGERÄTES MIT DEM HYDROVAR	28
11	GEBRÄUCHLICHE ANWENDUNGEN	29
	11.1 ΒΑΡΑΜΕΤΡΙΕΡΕΝ ΠΕΡ ΟΙ ΙΜΡΕ ΑLIE ΚΟΝΙΣΤΑΝΤΕΝ ΠΡΙΙζΚ	20
	11.2 FARAMETRIEREN DER FUMPE AUF KUNSTANTEN DRUCK	20
	11.2 EINZELPUMPE, FUMPENSICHERUNG	50 22
		שכ ככ
	11.4 EINGABE DER WERTE FÜR DIE KOMPENSATION	
	11.5 MIEHRPUMPENANLAGE KONST. DRUCK UND REGELUNG NACH EINER ANLAGENKURVE	
12	BEDIENUNG IM INVERTERMENU	40
13	EINSTELLUNGEN DER UNTERMENÜS	41
	13.1 Change Pressure - Druckänderung	41
	13.2 Auto start – Auto Start	41
	13.3 Mode - Betriebsart	42
	13.4 Control Response - Reglerverhalten	42
	13.4.1 Dimension unit - Masseinheit	
	13.5 Submenu Inverter – Untermenü Inverter	
	13.5.1 Maximum Frequency – Maximum Frequenz	
	13.5.2 Minimum Frequency – Minimum Frequenz	
	13 5 3 Boost - Motorstartspannung	رب <i>1</i> 2
	13.5.6 Doost interestion of the minimum frequency - Funktion hei Retrieh mit Minimalfrequenz	رہے 12
	13.5.4 Operation of the minimum requercy - runktion bet betteb mit winimidinequenz	כ4 אס
	13.6. Sudmeniu Controuter – Unitedmeniu Kontrouter	45 ۸۸

13.6.1 Window - % - Fenster	
13.6.2 Ramp Hysteresis - Hysterese	
13.6.3 Fast acceleration time – Schnelle Hochlaufzeit	
13.6.4 Fast deceleration time – Schnelle Tieflaufzeit	
13.6.5 Slow acceleration time – Langsame Hochlaufzei	[.]
13.6.6 Slow deceleration time – Langsame Tieflaufzeit.	
RAMP WINDOW - RAMPENFENSTER	45
13.6.7 Compensation Frequency – Anhub Frequenz	
13.6.8 Lift-Intensity – Anhub Intensität	
13.7 SUBMENU MULTICONTROLLER – UNTERMENÜ MULTIKONTROLI	ER46
13.7.1 Lift Value – Anhub Wert	
13.7.2 Fall Value – Absenk Wert	
13.7.3 Release – Follow up pump - Folgepumpe	
13.7.4 Switch Interval- Folge Zeit	
13.8 SUBMENU RELAY – UNTERMENU RELAIS	
13.8.1 Relay Configuration- Relais Einstellungen	
13.8.2 Start frequency of the slave pump - Freigabetre	quenz
13.8.2 Stop frequency of the slave pump - Stopfrequer	۶۶
13.9 SUBMENU SENSOR – UNTERMENU SENSOR	
13.9.1 Sensor – Adjust – Sensor Einstellung	
13.9.2 Sensoriviax-Adjust- Einstellung des Wessbereich	
13.10 SUBMENU TEST-KUN- UNTERMENU TESTLAUF	
13.10.1 Start of manual test run- Manueller Testlaur	
13.10.2 Sequence for automatic test run- Autom. Prob	eidui
12.10.4 Test Run: Poest Meterstartspappung für Pro	
	50 Seidul
13.11.1 Convoyor Limit - Fördorschwollo	50 50
13.11.2 Error Delay - Verzögerungszeit	
13 12 Set Pacsword $-$ Finistel Len des Pacswordtes	51
13 13 DEFAULT SETTINGS - WERKENSTELLINGEN	51
13.14 SUBMENII DIAGNOSIS – UNTERMENII DIAGNOSE	51
13 14 1 Pump Runtime - Retriehsstunden	51
13 14 2 Pump Address – Pumpenadresse	51
13 14 3 Frror memory - Fehlerspeicher	52
13.14.4 Software Version	
13.15 Set Password - Passworteinstellung	
"	_
14 KONTROLLER MENU	
14.1 CONTROLLER MENU CONFIGURATION – KONTROLLER MENU FI	NSTELLUNGEN 53
14.1.1 Autom Verbindung zum Programmiergerät	53
14.1.2 Software Version des Programmiergeräts	53
14.2 SUBMENU ADDRESS – UNTERMENÜ ADRESSE	53
14.2.1 Change of pump address - Adressenwechsel	53
15 MOGLICHE FEHLERMELDUNGEN	54
15.1 LOW WATER - WASSERMANGE	54
15.2 OVERHEATING MOTOR - ÜBERTEMPERATUR – MOTOR	
15.3 OVERVICEATING MOTOR OBERTEIN ERATOR MOTOR	
15.4 UNDERVOLTAGE - UNTERSPANNUNG	54 54
15.5 OVERI OAD - ÜBERI AST	54 54
15.6 OVERHEATING OF THE HEAT SINK - ÜRERHITZUNG	55
15.7 SENSOR FAULT – SENSOR FEHLER	55
15.8 Conveyor Limit Fault - Förderschwelleffhier	55
15.9 Additional Internal Processor Frror Messages – 705	ZLICHE INTERNE PROZESSOR FFHI FRMFI DUNGEN 55
16 WARTUNG	

1 Wichtige Sicherheitshinweise

Vor der ersten Inbetriebnahme muss die Bedienungsanleitung sorgfältigst gelesen werden. Alle Installationen bzw. Änderungen müssen von qualifizierten Fachkräften durchgeführt werden.

Beachten Sie neben den Hinweisen in dieser Bedienungsanleitung die allgemeingültigen Sicherheits- und Unfallverhütungsvorschriften!

Grundsätzlich ist vor jedem Eingriff in den elektrischen oder mechanischen Teil der Anlage der HYDROVAR-Regelteil von der Netzspannung zu trennen.

Installations-, Wartungs-, und Reparaturarbeiten dürfen nur von eingewiesenem, fachlich geeignetem und qualifiziertem Personal durchgeführt werden.

Eigenmächtige Umbauten oder Veränderungen an der Anlage schließen jede Gewährleistung aus.

Im Betriebszustand kann der Motor durch Abschaltung der Freigabe oder des Sollwertes angehalten werden, wobei der Regelteil und der Motor unter Spannung bleiben. Wenn aus Gründen für die Sicherheit des Bedienpersonals ein versehentliches Anlaufen des Motors ausgeschlossen werden muß, so ist eine elektronische Verriegelung durch Abschaltung der Freigabe oder des Sollwertes alleine nicht zulässig. Es ist daher der Regelteil von der Netzspannung zu trennen.

Beim Anschluß des Regelteils an die Netzspannung werden die Bauelemente des Leistungsteiles, sowie auch bestimmte Elemente des Steuerteiles mit der Netzspannung verbunden.

Bei Berühren dieser Bauelemente besteht Lebensgefahr!

Vor Entfernen der Frequenzumformerabdeckung ist die Anlage vom Stromnetz zu trennen. Nach Abschalten der Netzspannung sind **mindestens 5 Minuten** zu warten, bevor mit Arbeiten am oder im HYDROVAR-Regelteil begonnen werden kann (die Kondensatoren im Zwischenkreis müssen erst über die eingebauten Entladewiderstände entladen werden).

Es sind **Spannungen bis 400 V** möglich (im Störungsfall auch höher!).

Alle Arbeiten bei offenem Frequenzumformer dürfen nur von eingeschultem Fachpersonal durchgeführt werden.

Weiters ist zu beachten, daß beim Anklemmen der externen Steuerleitungen kein Kurzschluß an den benachbarten Bauelementen verursacht wird und nicht verwendete offene Kabelenden unbedingt isoliert werden.

Der HYDROVAR-Regelteil enthält elektronische Sicherheitseinrichtungen, die im Störungsfall den Regelteil abschalten, wodurch der Motor stromlos, jedoch nicht spannungsfrei wird, und zum Stillstand kommt. Ein Motorstillstand kann auch durch mechanisches Blockieren hervorgerufen werden. Bei einer elektronischen Abschaltung ist der Motor, über die Elektronik vom Frequenzumformer, von der Netzspannung abgeschaltet aber nicht potentialfrei geschaltet.

Außerdem können Spannungsschwankungen, insbesondere Netzausfälle, zu einer Abschaltung führen.

Die Behebung einer Störungsursache kann dazu führen, dass der Antrieb wieder selbständig anläuft!

Die Anlage darf nur geerdet in Betrieb genommen werden, weiters ist auch für einen Potentialausgleich aller Rohrleitungen zu sorgen.

Die Bedienungsanleitung muß von dem zuständigen Bedienungspersonal gelesen, verstanden und beachtet werden. Weiters weisen wir darauf hin, daß wir für Schäden und Betriebsstörungen, die sich aus der Nichtbeachtung der Betriebsanleitung ergeben, keine Haftung übernehmen.

Beachte:	Bei Hochspannungstests des Frequenzumformers, oder des	s
	angeschlossenen Motors, kann die Elektronik beschädigt werden!	
	Die Ein- und Ausgangsklemmen der HYDROVAR-Regeleinheit sind	k
	deshalb vorher kurzzuschließen (L-N— U-V-W miteinander verbinden).	
	Um Fehlmessungen durch die internen Kondensatoren in der Elektronil	k
	zu vermeiden, sollte der Elektromotor von der Regeleinheit elektrisch	ר
	getrennt werden.	

2 Anlagenschema

Die beiden Abbildungen zeigen den typischen Aufbau einer Anlage mit einer bzw. mit mehreren Pumpen mit Hydrovar-Regeleinheit. Der Anschluß der Anlage kann direkt an das Ortsnetz, bzw. an einen drucklosen Zulaufbehälter oder Brunnen erfolgen. Bei direktem Anschluß ist saugseitig ein Zulaufdruckschalter als Wassermangelsicherung einzubauen. Bei indirektem Anschluß an einen Zulaufbehälter bzw. Brunnen erfolgt die Wassermangelsicherung mittels Niveauschalter.

Anlage mit einer Pumpe

Anlage mit mehreren Pumpen

- (1) Pumpe mit Hydrovar-Regeleinheit
- (2) Membranspeicher
- (3) Schaltkasten
- (4) Absperrventil
- (5) Rückflussverhinderer
- (8) Zulaufdruckschalter
- (9) Manometer
- (14) Drucktransmitter

3 Membranspeicher

Bei einer Hydrovar geregelten Pumpe bzw. eines Mehrfachpumpenverband sollte immer ein Membrankessel an der Druckseite zur Aufrechterhaltung des Druckes bei Nullförderung vorhanden sein. Es sind keine großen Membrankesseln mehr notwendig um die Druckstöße zu kompensieren. Wenn sie einen Membrankessel verwenden, vergewissern sie sich, dass der Kessel für den eingestellten Anlagendruck ausgelegt ist. Der Membrankessel sollte so bemessen sein, dass das Volumen 10% der maximalen Fördermenge [l/min] der Pumpe ist.

Sollten zusätzliche Zertifikate benötigt werden, bitte wenden Sie sich an Ihren zuständigen Distributor!

Der Vorpressdruck sollte nach der unten angegebenen Tabelle in Abhängigkeit des Solldrucks eingestellt werden.

4 Messumformer

4.1 Drucktransmitter

Serie PA-22 M

Der Sensor dieses Drucktransmitters ist eine piezoresitve Siliziumzelle, die an flexiblen Leitungen spannungsfrei im Ölraum schwimmt. Der Druck wird über eine vollverschweißte Nickelmembrane in den Ölraum übertragen.

Spezifikation

Druckbereich (FS):	10 bar	(Andere Druckbereiche auf Anfrage)
Überdruck – P _{max} :	20 bar	
Schutzart:	IP 67	

Signal Ausgang:	0,5 – 4,5 V DC (ratiometrisch)
Versorgungsspannung:	5 VDC +/- 5%

Betriebstemperatur:	-2080°C
Lager Temperatur:	-40100°C

Elektrischer Anschluss:

+ VCC	\Rightarrow	Braun = Versorgungsspannung
+ Out	\Rightarrow	Weiß = Analog Ausgangssignal
GND	\Rightarrow	Grün = Masse

<u>Materialen:</u>

Gehäuse, Körper: Stahl, Messing Membrane: Nickel

Drucktransmitter:

Stecker:

4.2 Differenz Drucktransmitter

Serie PD-39 M

Der Sensor dieses Drucktransmitters besteht aus zwei piezoresitiven Siliziumzellen, die an flexiblen Leitungen spannungsfrei im Ölraum schwimmen. Der Druck wird über vollverschweißte Nickelmembranen in den Ölraum übertragen.

Spezifikation Druckbereich (FS): Überdruck Pmax: Schutzart:	4 bar 16 bar IP 65	<i>Differenz</i> Einseitig
Signal Ausgang: Versorgungsspannung: Bürde:	0,5 – 4,5 V DC 5 VDC +/- 10 > 5 kΩ	: (ratiometrisch) %
Linearität: Stability:	± 0.20 % FS; max. ± 0.5 % FS ± 0.1 % FS; max. ± 0.2 % FS	
Betriebstemperatur: Lager Temperatur:	-1080°C -40+80°C	

Gehäuse: 1.4435

Verschraubung und Stopfen: Stahl galvanisiert für Emetorrohr d=8mm

Inkl. 2m Kabel: Out (weiss) + VCC (braun) GND (grün) Schirm

5 Technische Daten - Frequenzumformer und allgemeine Daten

HYDROVAR		Hydrovar A zum N	Ausgang lotor	Netzspannung (Uin)	Netzvorsicherung min.
Туре	Nennleistung	Spannung	max. Strom	Netzfrequenz 4862Hz	
HV 1.1	1,1 kW	3x 230 V	4.8 A	1 x 220-240 V ±15%	10 Ampere
HV 1.15	1,5 kW	3x 230 V	7.0 A	1 x 220-240 V ±15%	16 Ampere
HV 1.2	2,2 kW	3x 230 V	10.0 A	1 x 220-240 V ±15%	16 Ampere

Ausgangsspannung:	3x 0Uin VAC / 0-70Hz (abhängig von der Eingangsspannung)
Minimalfrequenz:	0 - f-max
Elektrischer Wirkungsgrad:	>95%

Schutz gegen: Kurzschluss, Unterspannung, Überpannung, Übertemperatur der Elektronik (Überlast) wird von der eingebauten Elektronik überwacht und zusätzliche Schutzfunktionen via externe Schalter (Motortemperatur, Wassermangelsicherung).

Die Frequenzumformer der Serie HV erfüllen die allgemeinen EMV-Bestimmungen und wurden nach den folgenden Bestimmungen und Normen geprüft:

5		
 Funkentstörung 		EN 550011
 Beeinflussung durch 	hochfrequente Felder:	EN 61000-4-3 und
-	·	ENV 50204
Entladung statischer	Elektrizität:	EN 61000-4-2
Umgebungstemperatur: Lagertemperatur: Feuchtigkeit:	5° C + 40°C -25° .C + 55° C rH max. 50% bei 40°C	(+70°C während max. 24 St.) Unbeschränkt
5	RH max. 90% bei 20°C 75% Jahresmittel Eine Betauung ist nicht zulässig!	Max. 30 Tage im Jahr (Klasse F, DIN 40 040)
Luftverunreinigung:	Die Luft darf trockenen Sta ohne besondere Staubent vorkommt, enthalten	ub, wie er in Arbeitsräumen wicklung durch Maschinen
nicht zulässig sind:	Ungewöhnliche Staubmenge Salze, etc.	en, Säuren, korrosive Gase,
Aufstellungshöhe:	max. 1000m über Meer Bei höheren Aufstellungsorten muss eine Leistungs- reduzierung in Kauf genommen werden. Bitte beim Hersteller anfragen.	
Schutzart:	HV1.1, HV1.15, HV1.2: IP 55	5

Gewicht
[Kg]
2,00
4,70
4,70

HV1.15,1.2:

5.1 Masse und Gewicht

6 HYDROVAR Montage

6.1 Montieren des Hydrovars auf einer Pumpe

6.1.1 Mitgelieferte Komponenten

Variante für HV1.1:

Montage und Distanzring

Beilagscheibe

Thermistor

Kabelverschraubung

Variante für HV1.15-1.2:

Schrauben M5x50

Thermistor

Kabelanbauverschraubung

6.1.2 Mechanische Montage

Variante für HV1.1:

- 1. Entfernen Sie die Schrauben der Lüfterhaube des Drehstrommotors, und nehmen die Lüfterhaube ab
- Fügen Sie den Montage Distanzring

 zwischen die Lüfterhaube und Hydrovar ein. Montieren Sie die Einzelteile mit der Schraube (3) zu einem Teil zusammen.
- 3. Nehmen Sie nun die Lüfterhaube mit aufgebautem Hydrovar und montieren Sie sie auf dem Motor.

Achtung:

Bitte vergessen Sie die Beilagscheibe zwischen der Schraube und der Lüfterhaube nicht!

Variante für HV1.15-1.2:

Die Dichtungen bei den 3 Schrauben nicht vergessen. Achtung auf Wasserrückstände auf dem Gerät, beim Öffnen des Deckels könnte sonst Wasser ins Gerät eindringen.

Ist am Motor eine Plastiklüfterhaube montiert, <u>muss</u> <u>unbedingt</u> ein Montagering verwendet werden.

6.1.3 Montage des PTC-Widerstandes

Variante A:

- 1. Klemmkastendeckel des Motors öffnen und den Klemmenblock abschrauben.
- 2. PTC-Widerstand (Variante A oder B) befestigen
- 3. Elektrischer Anschluss des Motorkabels siehe Kapitel 7.3.

6.1.4 Montieren des Drucktransmitters

Im Lieferumfang des Drucktransmitters ist folgendes enthalten:

- (1) Drucktransmitter
- (2) Dichtung

- 1. Der Drucktransmitter hat ein Gewinde von G $\frac{1}{4}$ ". Wenn es notwendig ist muß eine Reduzierung ($\frac{3}{8}$ " $\frac{1}{4}$ ") in der Pumpe oder im Rohr montiert und mit den gelieferten Dichtungen abgedichtet werden.
- 2. Elektrischer Anschluß siehe Kapitel (6.2)

6.2 Elektrische Installation und Verdrahtung

<u>Merke:</u> Alle Installationen und Wartungsarbeiten MÜSSEN von qualifizierten Fachkräften mit geeigneten Werkzeugen durchgeführt werden.

<u>Achtung:</u>

Im Falle eines Fehlers, Unterbrechung oder Ausfall der Stromversorgung müssen sie fünf Minuten warten, bis der Kondensator vollständig Entladen ist, dann können sie mit Arbeiten am Hydrovar fortfahren.

6.2.1 Schutzarten

Welche Schutzmaßnahmen in Ihrem Anwendungsfall notwendig sind, erfragen Sie im Zweifelsfalle bei dem für Sie zuständigen Elektroversorgungsunternehmen.

Zur Anwendung kommen: Pulsstromsensitiver Fehlerstrom-Schutzschalter Schutzerdung Nullung Schutzleitersystem

Für jeden Hydrovar muss ein eigener FI-Schalter verwendet werden!

6.2.2 Verkabelung des Hydrovars zum Motor

Entfernen Sie die 3 Schrauben, die sich auf der Frontplatte des Hydrovars befinden. Die Abdeckhaube vorsichtig anheben und die Erdungsschraube lösen. Anschließend die Abdeckhaube zur Seite legen.

Nun können sie die zwei Haupteile sehen

- (1) Steuerkarte mit allen Klemmmen für die Steuersignale und die RS485 Schnittstelle
- (2) Leistungskarte mit den Klemmen für die Stromversorgung und den Motor.

<u>HV1.1:</u>

6.2.2.2 Anschluß der Stromversorgung

a) <u>Motorkabel:</u>

Lokalisieren Sie die Motorklemmen auf der Hauptkarte, beschriftet mit U,V,W (siehe oberes Diagramm). Verbinden sie die Drähte mit den Klemmen und führen sie das Kabel durch die Kabeleinführung. **Um die Schutzart IP55 beim HV1.1 zu gewährleisten muss ein Motorkabel mit einem Ø von 11,5mm verwendet werden!**

Der Erdungsdraht muss mit einer Schraube am Kühlkörper des Hydrovars befestigt werden.

Anschlußvarianten im Motorklemmkasten

Der Anschluß des Motorkabels hängt von der Type des Motors ab und kann auf zwei Arten erfolgen:

(der Hydrovar kann max. einen Motor mit 3x230 V betreiben (siehe Leistungsschild))

Stern-Schaltung

Dreieck- Schaltung

b) Stromversorgungskabel

Das Stromversorgungskabel wird mit den Klemmen L1, N (entspricht 230VAC, Einphasig) am Leistungsteil angeschlossen (Diagramm 6.2.2.1).

6.2.3 Steuerung

Drucktransmitter, Differenzdrucktransmitter oder ein externes Spannungssignal (0,5-4,5 VDC) wird an den Klemmen X2/1, X2/2 und X2/3 angeschlossen. Der Sollwert wird am Umrichter vorgegeben.

6.2.4 Steuerklemmen

Alle Kabel, welche an den Steuerklemmen oder die RS485-Schnittstelle angeschlossen werden, müssen abgeschirmt sein.

Die Elektronikmasse darf nicht mit anderen Potentialen verbunden werden!

Alle Elektronikmassen und GND der Schnittstelle RS485 sind intern verbunden. Für die externe Freigabe (Klemmen X2/4-X2/5) ist unbedingt ein Kontakt zu verwenden, der für eine Schaltspannung < 10 Volt verwendbar ist.

Werden Steuerleitungen ohne Abschirmung verwendet, können Signalstörungen auftreten und die Funktion des Frequenzumformers beeinflussen.

Bei der Zusammenschaltung der Regelpumpen (max. 4 Pumpen) über die Schnittstelle RS485 sind die Klemmen X3/1, X3/2 und X3/3 mittels geschirmtem Kabel mit jedem HYDROVAR zu verbinden und entsprechend mit dem Programmiergerät zu programmieren (Programmierung siehe Kapitel 13.7).

Steuerklemmen:

6.3 Klebeschild

7 Bedienung ohne Programmiergerät

Beachte:	Bevor sie das System starten, muß die Pumpe bzw. der Pumpenverband
	komplett verdrahtet, verrohrt und befüllt sein!

- Change Pressure: enabled
- Auto Start: enabled

Einstellmöglichkeiten mittels der Druckknöpfe (vom Hydrovar)

Die Pumpen können sie

STARTEN mit der Araste (Ist der Autostart nicht eingestellt kann die Pumpe gestartet werden indem Sie die 🔽 und dann die 🛆 Taste drücken). Beim Erststart oder nach einem Netzausfall können Sie die Pumpe mit der 🔽 Taste STOPPEN.

Beide Tasten befinden sich auf der Bedienebene des Hydrovars

• Änderung des Druckes ohne Programmiergerät

Um den Druck ohne Programmiergerät zu ändern müssen Sie wie folgt vorgehen:

1.	Starten sie die Pumpe mit Druck auf die 🔺 Taste auf der Bedienebene des Hydrovars
	· · · · · · · · · · · · · · · · · · ·
2.	Drücken Sie die Tasten \Lambda und 🔽 gemeinsam länger als 3 Sekunden.
3.	Die Farbe der LED ändert sich auf Orange.
4.	Nun können sie mit den 🛽 und 🗹 Tasten den Druck ändern.
	Die einzige Möglichkeit den Druck zu kontrollieren ist das Manometer.
5.	Betätigt man keine Taste innerhalb von 5 Sekunden, kehrt der Hydrovar
	automatisch zur normal Funktion zurück. Der neu eingestellte
	Druck wird gespeichert.

8 Mögliche Signale der LED am Hydrovar Kopf

.) Grün leuchtend	⇒ Motor läuft nicht (Stop über Klemme X2/4, X2/5; verhinderter Autostart, oder am Inverter wurde die ☑ Taste gedrückt)	
.) Grün langsam blinkend	\Rightarrow Umrichter aktiv, Motor im Stillstand.	
.) Grün schnell blinkend	\Rightarrow Motor läuft	
.) Orange leuchtend die	 ⇒ wenn ohne Programmiergerät der Solldruck mit und verändert wird, oder wenn das Programmiergerät angeschlossen und die Pumpe nicht aktiv ist (am Inverter wurde Taste gedrückt;. oder Stop über Klemme X2 4/5) 	
.) Orange langsam blinkend	⇒ Das Programmiergerät ist mit dem Hydrovar verbunden; Inverter aktiv, aber die Pumpe läuft nicht (weil der eingestellte Sollwert erreicht ist).	
.) Orange schnell blinkend	⇒ Das Progammiergerät ist mit dem Hydrovar verbunden und die Pumpe läuft.	
.) Rot leuchtend	⇒ Fehler Meldung (Die Art des Fehlers wird am Display des Progammiergerätes angezeigt)	
.) Rot blinkend	⇒ Schwerer Fehler (Umrichter muß SPANNUNGSFREI gemacht werden)	

Bedienung im Hauptmenü

Programmstruktur

Funktionstasten des Programmiergerätes:

Mit den Tasten \leftarrow und \rightarrow bewegt man sich zwischen den Parametern vor und zurück, um in die Untermenüs zu gelangen muß man die Taste \checkmark drücken.

Jedes Untermenü kann man durch längeres Drücken (min 3 sec.) der ← oder der → Taste verlassen.

Mit den Tasten ♥ und ↑ kann man Parameter verändern.

Alle Veränderungen werden durch Drücken nach ← oder der → Taste automatisch gespeichert.

Wenn man den geänderten Parameter verlässt gibt der Hydrovar folgende Meldung aus:

SAVE	Länger als 2 sec.
PARAMETER	

10 Verbindung des Programmiergerätes mit dem Hydrovar

Nachdem der Hydrovar ans Netz und das Programmiergerät an den Hydrovar angeschlossen wurde, können zwei unterschiedliche Meldungen am Programmiergerät angezeigt werden:

1. Wenn der Parameter <u>AUTOCONNECTION</u> (14.1.1) ausgeschaltet wurde (Standard) erhalten Sie auf dem Display des Programmiergeräts folgende Meldung:

Address	01
Lost	

Diese Meldung wird angezeigt, wenn das Pro-

grammiergerät mit dem Hydrovar verbunden wurde.

Das Programmiergerät baut zum Hydrovar eine Verbindung auf, dabei versucht das Programmiergerät alle verfügbaren Adressen zu finden.

Ist die Adresse 01 verfügbar, ändert sich das Display auf

Address 01 Detected Die aktive Pumpenadresse wird angezeigt.

Statusinformationen bei Systemen mit aktiviertem Folgeregler:

- P1: Masterpumpe
- P2: Folgepumpe
- P3: Folgepumpe
- P4: Folgepumpe
- P.: Folgenummer ist nicht sinnvoll bestimmbar

Hold: Pumpe wurde durch den Druckregler gestoppt

Run: Pumpe läuft

Stop: Pumpe durch Vorgängerpumpe gestoppt

Disabled: Pumpe durch Stopptaste oder Klemme gestoppt

Error: Pumpe durch Fehler gestoppt

- ✤ Nachfolgende Pumpe ist gestoppt
- Regler der nachfolgenden Pumpe ist freigegeben Pumpe wirkt nicht auf nachfolgende Pumpe

Ist die Pumpenadresse 01 nicht verfügbar, bleibt das Display unverändert, wie folgt:

Address	01	
Lost		,

Sie können nun zwischen den Adressen mit \uparrow und \checkmark wählen, bestätigt wird die Pumpenadresse mit \rightarrow .

Durch drücken der → am Programmiergerät gelangen Sie ins INVERTERMENU (siehe Kapitel 12)

2. Wenn der Parameter <u>AUTOCONNECTION (14.1.1</u>) auf enabled (aktiv) gestellt wurde, wird folgende Meldung am Display angezeigt:

SCANDiese Meldung wird beim VerbindungsaufbauCONNECTIONzwischen Programmiergerät und Hydrovar

angezeigt, wenn *AUTOCONNECTING* (Kapitel 14.1.1) auf aktiv gesetzt wurde. Das Programmiergerät sucht wärend dieser Meldung nach vergebenen oder voreingestellten Adressen!

Dann wechselt das Display zum ersten Fenster des Invertermenüs.

PRESS	X.X bar
SPEED	X.X Hz

Das Display zeigt den aktuellen Druck in [Bar] und die Drehzahl in [Hz].

11 Gebräuchliche Anwendungen

11.1 Parametrieren der Pumpe auf konstanten Druck

Bei der ersten Inbetriebnahme müssen die Parameter "Change Pressure" und "Autostart" auf enabled gesetzt werden (standard). Nachdem das Programmiergerät am Hydrovar angeschlossen wurde zeigt das Display folgende Meldung an:

> Scan Connection

Diese Meldung wird beim Verbindungsaufbau zwischen Programmiergerät und Hydrovar gezeigt

Dann wechselt das Display zum ersten Fenster des Invertermenüs.

Press	x.x bar
Speed	d x.x Hz

Das Display zeigt den aktuellen Druck in [Bar] und die Drehzahl in [Hz]. (es ist ein Druck von 3,5 Bar voreingestellt)

Drücken Sie → am Programmiergerät um zu wechseln auf

Pressure xx.x bar

Um den benötigten Druck einzustellen verwenden Sie die ↑ und ↓ Knöpfe.

Nachdem der Druck eingestellt wurde drücken Sie die →-Taste zur Bestätigung. Der neue Wert wird dann automatisch gespeichert, dies ist durch die Meldung "SAVE PARAMETER", die für kurze Zeit am Display erscheint zu sehen.

Dann drücken Sie 🗲 am Programmiergerät um zum 1. Fenster zu gelangen

Press x.x bar Speed x.x Hz

11.2 Einzelpumpe, Pumpensicherung

<u>Beachte:</u>

Der Schutz gegen Betrieb bei zu niedrigem oder keinen Zulaufdruck kann entweder über einen Druckschalter in der Saugleitung oder einen Niveauschalter im Zulaufbehälter realisiert werden. Anschluß siehe Klemmenbelegung.

Einstellen des Trockenlaufschutzes:

Notiz:

Der Trockenlaufschutz ist für Ein- und Mehrpumpensysteme mit gemeinsamer Saugleitung auch durch Messen des Anlagendruckes realisierbar. Bei Mehrpumpensystemen mit separaten Saugleitungen kann dieser Schutz nicht verwendet werden, da der Anlagendruck von einer anderen Pumpe erzeugt werden kann.

Nach dem 1. Fenster drücken Sie → zweimal bis Sie erreichen

Dann drücken Sie ullet und das Display wechselt zu

<u>Passwort:</u> Der Paßwortschutz verhindert eine unerlaubte Änderung der Parameter durch nicht befugtes Personal.

Drücken Sie 🛧 bis Sie die Nummer 0066 erreichen

Drücken Sie mehrmals **→** bis Sie folgendes Display erreichen

Drücken Sie Ψ einmal um zum nächsten Parameter zu wechseln

CONVEYOR LIMIT (FÖRDERSCHWELLE)

"0.0" bar ist gleich deaktiviert .

Ein eingestellter Wert >0 muß innerhalb der in Para-meter "ERROR DELAY" eingestellten Zeit erreicht werden. Ist dies nicht der Fall, schaltet der Hydrovar ab und am Display wird die Meldung "CONVEYOR CONTROL ERROR" (Förderschwellefehler) angezeigt.

Durch drücken von \bigstar und \blacktriangledown können Sie den Druck

eingeben (bar) bei dem die Pumpen abschalten.

Typisch ist eine Einstellung von 1 bar weniger als der System Druck.

Nach dem Ändern des Wertes müssen Sie mit → bestätigen.

Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

PASSWORD 0066

SUBMENU ERROR

CONVEYOR LIMIT 0,0 bar

CONVEYOR LIMIT 0,0 bar

PARAMETER

PASSWORD 0000

SUBMENU

Fördermengen (entsprechend den Rohrreibungsverlusten) bestimmt. Um diese Parameter zu programmieren, müssen Sie den Druck berechnen, den Sie benötigen um alle Reibungsverluste bei maximalem Durchfluß zu überwinden.

Drücken Sie → einmal um zur Anzeige zu wechseln

VERZÖGERUNG (ERROR DELAY):

Einstellbar zwischen 0...100 sek.

Verzögerungszeit für die Abschaltung des Hydrovars bei Wassermangel (Terminal X2/6-X2/7) oder Unterschreitung der Förderschwelle (siehe Kapitel 13.11.1).

Durch drücken von \uparrow und \checkmark können Sie die Zeit eingeben die die Pumpe noch bei eingegebenem "Conveyor Limit" läuft bevor sie abschaltet.

Nach dem Ändern des Wertes müssen Sie mit 🗲 bestätigen. Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Halten Sie → für ca. 3 Sekunden gedrückt und das Display wechselt zu

Halten Sie \rightarrow für ca. 3 Sekunden gedrückt und das Display wechselt zu

> Die Hydrovar-Regeleinheit kann automatisch die Rohrreibungsverluste, die durch erhöhten Durchfluß entstehen, ausgleichen. Tabellen für die Kalkulation der zu erwartenden Verluste sind in den meisten Pumpenkatalogen angeführt. Verwenden Sie diese Tabellen, um den Reibungsverlust für Ihren verwendeten Rohrdurchmesser bei maximalem Durchfluß zu bestimmen. Dieses Diagramm zeigt eine typische Anlagenkurve. Der eingestellte Sollwert bestimmt hier den erforderlichen Druck bei

geringer Fördermenge.

Die Anhubintensität wird durch die erforderliche Druckerhöhung bei größeren

11.3 Einzelpumpe – Regelung nach einer Anlagenkurve

f=100% Fenster %1 window %f Anhubintensität in % des eingestellten Solldruckes lift intensity %f in % of eingestellter set pressure Solldruck set pressure 2 0

ERROR DELAY 10 s

ERROR DELAY

10 s

SUBMENU ERROR

PRESSURE x.x bar SPEED xx Hz

Instruktionen:

Nach dem 1. Fenster drücken Sie zweimal → bis Sie erreichen

Dann drücken Sie Ψ und das Display wechselt zu

Passwort:

Der Passwortschutz verhindert eine unerlaubte Änderung der Parameter durch nicht befugtes Personal.

Drücken Sie 🛧 bis Sie die Nummer 0066 erreichen

Drücken Sie → mehrmals bis Sie folgendes Display erreichen

Drücken Sie Ψ um ins Untermenü zu gelangen und den Parameter "WINDOW" zu erreichen

Drücken Sie \rightarrow mehrmals um den Parameter zu erreichen

LIFT FREQUENCY:

Diese Einstellung bestimmt ab welcher Ausgangsfrequenz der erforderliche Regeldruck erhöht werden soll. Diese Frequenz sollte der Ausgangsfrequenz entsprechen, bei welcher die Pumpe am eingestellten Solldruck und bei einem Durchfluß = 0 arbeitet. In einem 50 Hz System, ist kein Fluß unter 30 Hz, in einem 60 Hz System nicht unter 40Hz.

Drücken Sie ↑ und ↓ bis Sie den Wert LIFT FREQUENCY erreichen 30 Hz

Nach dem Ändern des Wertes müssen Sie mit → bestätigen. Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Nun drücken Sie → bis Sie folgendes Display erreichen

LIFT INTENSITY:

Dieser Wert gibt an, um wieviel Prozent des Sollwertes der Regeldruck kontinuierlich, bis zum Erreichen der eingestellten Maximaldrehzahl (Maximalmenge) angehoben werden soll.

Nach dem Ändern des Wertes müssen Sie mit → bestätigen.

Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Halten Sie → für 3 Sekunden um zum Untermenü zurückzukehren

Halten Sie 🗲	wieder für	3 Sekunden	um zum	1. Display
zu gelangen				

SUBMENU PARAMETER

PASSWORD 0000

0066

PASSWORD

SUBMENU CONTROLLER

> WINDOW 5 %

LIFT FREQUENCY 30 Hz

LIFT INTENSITY 0,0 bar

CONTROLLER

SUBMENU

PRESSURE x.x bar
SPEED xx Hz

11.4 Mehrpumpenanlage Konst. Druck und Regelung nach einer Anlagenkurve

Wenn zwei, drei oder vier Hydrovar-Pumpen in einer Anlage verbunden sind, können sie so programmiert werden, das sie zusammen den Anlagendruck bis zur maximalen Fördermenge aller Pumpen konstant halten.

Sobald die erste Pumpe ihre maximale Drehzahl und Fördermenge erreicht hat, schaltet sich die zweite Pumpe automatisch ein, und so weiter. Zusätzlich kann eine automatische Umreihung der Pumpen programmiert werden, um die Betriebsstunden gleichmäßig auf alle Pumpen aufzuteilen.

Instruktionen:

!! Siehe Kapitel 11.1 (Einzel Pumpe - konstanter Druck).

Folgen Sie diesen Instruktionen für die Einstellung des Solldrucks und dann fahren Sie fort mit folgenden Schritten.

Nach dem 1. Display drücken Sie

zweimal bis Sie erreichen

SUBMENU PARAMETER

Dann drücken Sie 🖊 und das Display wechselt zu

PASSWORD 0000

PASSWORD 0066

SUBMENU

MULTICONTROLLER

0.15 bar

Passwort:

Der Passwortschutz verhindert eine unerlaubte Änderung der Parameter durch nicht befugtes Personal.

Drücken Sie 🛧 bis Sie die Nummer 0066 erreichen

Drücken Sie **→** mehrmals bis Sie folgendes Display erreichen

Drücken Sie Ψ um ins Untermenü zu gelangen und den ACTUAL VALUE INCREASE Parameter ACTUAL VALUE INCREASE zu erreichen

ACTUAL VALUE INCREASE (= Lift value):

Dieser Wert, zusammen mit dem Absenk-Wert (ACTUAL VALUE DECREASE) bestimmt die Erhöhung des Regeldruckes nach dem Starten einer Folgepumpe (siehe Beispiel auf der nächsten Seite)

Allgemein wird ein leichter Druckabfall zugelassen, bevor die nächste Pumpe startet. Dieser gewährleistet einen stabilen Lauf der Pumpen (ohne dauerndes Ein- und Ausschalten der Folgepumpen) auch bei leichten Verbrauchsschwankungen in der Anlage. Beim Start der Folgepumpe sollen jedoch alle Pumpen auf dem geforderten Druck weiterlaufen.

Um dies zu programmieren, geben Sie die Höhe des erlaubten Druckabfalles ein, wann die nächste Pumpe starten soll = ABSENKWERT. Das Diagramm zeigt den erlaubten Druckabfall und die nachfolgende Erhöhung.

Um den Druck beim Start einer Folgepumpe zu erhöhen, um die Systemverluste bei hohen Durchflußmengen auszugleichen, müssen Sie den erlaubten Druckabfall vor dem Start der nächsten Pumpe (ABSENKWERT) und die gewünschte Erhöhung des Regeldruckes (ANHUBWERT) eingeben.

Beispiel: Wenn der erlaubte Druckabfall vor dem Start der nächsten Pumpe 0,35 Bar beträgt, und zum Ausgleich der Systemverluste ein Druckanstieg von 0,2 Bar erforderlich ist, müssen Sie 0,35 + 0,20 = 0,55 Bar als ANHUBWERT eingeben.

Funktionsbeispiel:

- 1) Pumpe 1 erreicht die Freigabefrequenz (ENABLE SEQ. CONTROL)
- 2) Anlagendruck fällt unter die Startschwelle
 - (= SOLLWERT ABSENKWERT) NÄCHSTE Folgepumpe startet
- 3) Pumpe 2 startet automatisch
- 4) Der erforderliche Regeldruck wird nach dem Start der Folgepumpe folgendermaßen neu kalkuliert:

<u>Neuer Sollwert</u> = Sollwert 1 – Absenkwert + Anhubwert

Allgemein:

k ... Anzahl der aktiven Pumpen (k > 1)

 $P = P_{set} + (k-1)^{*}[Anhubwert - Absenkwert]$

- Anhubwert = Absenkwert \Rightarrow **Druck** bei Pumpenzuschaltung **konstant**
- Anhubwert > Absenkwert \Rightarrow **Druck** bei Pumpenzuschaltung **steigt**
- Anhubwert < Absenkwert \Rightarrow **Druck** bei Pumpenzuschaltung **sinkt**

Notiz:

Dieser Wert ist kumulativ. Jedesmal wenn eine Folgepumpe zuschaltet, wird der gesamte Systemdruck um 0,2 Bar erhöht. Zum Beispiel bei einem programmierten Sollwert von 3,5 Bar beträgt der neue Sollwert bei 2 laufenden Pumpen 3,7 Bar, bei 3 Pumpen 3,9 Bar und bei 4 Pumpen regeln diese auf einen konstanten Druck von 4,1 Bar.

Ändern Sie auf den gewünschten Wert durch drücken von \clubsuit und \clubsuit

ACTUAL VALUE INCREASE
0,15 bar

Nach dem ändern des Wertes müssen Sie mit → bestätigen.

Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Drücken Sie → bis Sie folgendes Display erreichen

<u>ACTUAL VALUE DECREASE (= Fall value):</u>

Dieser Wert bestimmt den zulässigen Druckabfall, bevor die nächste Folgepumpe starten soll. (siehe Anwendungsbeispiel auf der vorherigen Seite)

Ändern Sie auf den gewünschten Wert durch drücken von igtharpoint und igstarfoilt

Nach dem Ändern des Wertes müssen Sie mit → bestätigen. Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Drücken Sie → bis Sie folgendes Display erreichen

ENABLE SEQUENCE CONTROL:

Die Folgepumpe startet nur, wenn die Startschwelle erreicht ist (siehe Kapitel 13.7.2) <u>und</u> die Hauptpumpe die programmierte Freigabefrequenz erreicht hat..

(Einstellbar von 0.0 Hz bis 70 Hz). Im Allgemeinen wird diese Startfrequenz 1 bis 2 Hz niedriger als die MAX. FREQUENZ (siehe Kapitel 13.5.1) eingestellt.

Wenn Sie einen Start der Folgepumpen verhindern wollen, muß dieser Wert höher als die Maximalfrequenz eingestellt werden. (siehe Beispiel auf der vorhergehenden Seite)

Ändern Sie auf den gewünschten Wert durch drücken von \blacklozenge und \blacklozenge

Nach dem Ändern des Wertes müssen Sie mit → bestätigen.

Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Drücken Sie → bis Sie folgendes Display erreichen

SWITCH INTERVAL

Intervall für die Umreihung der Hauptpumpe um gleich-mäßige Betriebsstunden für alle Pumpen zu erreichen. Einstellbar zwischen 0 und 250 Stunden.

Ändern Sie auf den gewünschten Wert durch drücken von \clubsuit und \clubsuit

Nach dem Ändern des Wertes müssen Sie mit → bestätigen.

Dann erhalten Sie die Nachricht "SAVE PARAMETER" für eine kurze Zeit, wenn der neue Wert gespeichert wird!

Verwenden Sie Einstellungen für dieses Untermenü (lift value, fall value, enable sequence control und switch interval) für jede Pumpe im Hydrovar System.

Halten Sie → für 3 Sekunden um zum Untermenü zurückzukehren

SUBMENU CONTROLLER

SWITCH INTERVAL 24 HOURS

ENABLE SEQ. CONTROL

49 Hz

ENABLE SEQ. CONTROL 48 Hz

ACTUAL VALUE DECREASE 0,15 bar

SWITCH INTERVAL 24 HOURS Halten Sie → wieder für 3 Sekunden um zum 1.Display zu gelangen.

PRESSURE x.x bar SPEED xx Hz

Bei **erstmaliger** Adressenvergabe einer <u>Mehrpumpenanlage</u> darf nur jener HYDROVAR an Spannung gelegt werden, welcher gerade programmiert wird. Ansonsten nehmen alle weiteren HYDROVARS, die über eine RS485 Schnittstelle verbunden sind, automatisch die gleiche Adresse an.

In der folgenden Auswahl müssen Sie für jede Pumpe eine Adresse festlegen.

Normalerweise ist die 1. Programmierte die Nummer 1, die Zweite ist Nummer 2, usw.. Dies erleichtert es der Hydrovar Regelung die Start- und Stopaktivitäten, inkl. der Auswahl der Haupt- und Folgepumpen festzulegen.

Halten Sie → länger als 3 Sekunden bis Sie folgendes Display erreichen, wo Sie die aktuelle Pumpenadresse ersehen oder	Address 01 Detected
wenn es keine aktive Adresse gibt wird dieses angezeigt:	Address 01 L O S T
Dann drücken Sie 🗲 zweimal bis Sie folgendes Display	Submenu
erreichen	Address
Drücken Sie $oldsymbol{\Psi}$ um ins Untermenü zu gelangen und den	Address Change
Parameter "Address Change" zu erreichen	00> 00 *

Adressen von 01 bis 04 und auch 00 kann in diesem Parameter eingestellt werden. Um die Adresse zu wechseln ist es nicht notwendig die Interface Verbindungen der einzelnen Hydrovar zu Unterbrechen.

Auf der linken Seite ist die Adresse des HYDROVARS gezeigt, den Sie ansprechen möchten (wählen Sie die Adresse durch drücken von \uparrow oder \blacklozenge). Auf der rechten Seite können Sie dem Hydrovar eine neue Adresse geben ebenfalls mit den Tasten \uparrow und \blacklozenge . Sie können nur eine Adresse verwenden, die in dieser Pumpengruppe noch nicht in Verwendung ist!

Um zwischen linker und rechter Seite zu wechseln drücken Sie \leftarrow oder \rightarrow . Der Stern zeigt die aktuell verwendete Seite.

Um die neu gewählte Adresse zu sichern drücken Sie beide Tasten (\Uparrow and \clubsuit) zusammen für 2 Sek. Wenn Sie erfolgreich waren, erscheint die selbe Adresse auf beiden Seiten.

Beispiel:

Ändern des Hydrovar mit der Adresse 01 auf Adresse 04:

Wählen Sie die Adresse des Hydrovars mit 🛧 und 🕹 von dem
Sie die Adresse ändern möchten

Drücken Sie 🗲 um den (Stern) * zur linken Seite zu wechseln

Drücken Sie → um den (Stern) * zur rechten Seite zu wechseln

Wählen Sie die Adresse mit \blacklozenge und \blacklozenge , die Sie diesem Hydrovar geben möchten.

Um die neu gewählte Adresse zu sichern drücken Sie beide Tasten $(\leftarrow und \rightarrow)$ zusammen für 2 Sek. wenn Sie erfolgreich waren erscheint die selbe Adresse auf beiden Seiten.

Address Change	
04> 04*	

Die Adressen – Auswahl haben Sie für jede Pumpe in diesem System zu treffen.

Drücken Sie → für 3 Sekunden um zum Untermenü zurückzukehren

Drücken Sie → wieder für 3 Sekunden um zum 1. Display zu gelangen

12 Settings at the Invertermenu - Bedienung im Umrichtermenü

1. Display

PRESS X.X bar SPEED X.X Hz

Der aktuelle Druck [bar] und die aktuelle Ausgangsfrequenz [Hz]werden angezeigt.

Drücken Sie > am Programmiergerät um zu wechseln auf

PRESSUR	E
XX.X ba	r

Hier können Sie den erforderlichen Druck mit \bigstar und \checkmark festlegen

Drücken Sie > am Programmiergerät um zu wechseln auf

SUBMENU
PARAMETER

Um ins Untermenü "Parameter" zu gelangen drücken Sie Ψ

Drücken Sie > am Programmiergerät um zum 1. Display zu wechseln

Address Change 00* --> 00 Address Change 01* --> 00

> Address Change 01 --> 00*

Address Change

01 --> 04*

SUBMENU Address

PRESSURE x.x bar SPEED xx Hz

13 Settings at the Submenu-Parameter – Einstellungen der Untermenüs

Wichtig: Bevor Sie in das Untermenü einsteigen, müssen Sie diese Anleitungen sorgfältig durchlesen, um falsche Einstellungen zu verhindern, welche zu Fehlfunktionen der Regeleinheit führen können.

Nach dem Einstieg ins SUBMENU PARAMETER, wechselt das Display

... zu

PASSWORD	
0000	

Wählen Sie das Passwort 0066 durch drücken von \clubsuit und \clubsuit

PASSWORD 0066

Notiz: Das Passwort muss bei jedem Einstieg eingegeben werden.

Bestätigen Sie durch Drücken von → und der 1. Parameter des Untermenüs wird gezeigt. Change Pressure Enabled

13.1 Change Pressure - Druckänderung

Change Pressure	Sie können wählen zwischen 🛧 (Enabled) oder 🛡
Enabled	(Disabled)

Enabled: Sie können den Druck mit 🖾 und 🔽 direkt ändern *(siehe Kapitel 7)* ohne externem Programmiergerät.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.2 Auto start – Auto Start

Auto Start	Sie können wählen zwischen 4 Disabled und
Enabled	↑ Enabled

Enabled: (**ON**) die Pumpe startet wieder automatisch nach einer Spannungsunterbrechung.

Disabled: (OFF) die Pumpe muß nach einem Spannungsausfall manuell durch drücken von ☑ und ▲ wieder gestartet werden .

Drücken Sie → am Programmiergerät um zu wechseln auf

13.3 Mode - Betriebsart

	Mode Controller	Wählen Sie mit den Tasten 🕹 und 🛧 zwischen:	
Multicontr	oller ⇒ Folgeregelung f über die RS485	ür max. 4 Pumpen (Mehrpumpenanlage, verbunden Schnittstelle	
Controller Actuator =	 ⇒ Anwendung, we ⇒ wird mit einem normaler Freque Hydrovars wird (0 – 4,5 V) besti 	Anwendung, wenn nur eine Hydrovarpumpe in Betrieb ist wird mit einem externen Regler verwendet wobei der Hydrovar als normaler Frequenzumrichter arbeitet. Die Ausgangsfrequenz des Hydrovars wird vom Eingangssignal an den Klemmen X2/1 und X2/2 (0 – 4,5 V) bestimmt.	

Drücken Sie → am Programmiergerät um zum nächsten Parameter zu wechseln

13.4 Control Response - Reglerverhalten

Regulation Mode
NormalNormal: Drehzahl wird bei sinkendem Istwertsignal
erhöht (z.B.: Regelung auf konstanten Anlagendruck)Inverse: Drehzahl wird bei sinkendem Istwertsignal reduziert (z.B.: Regelung auf
konstanten

Zulaufdruck oder auf konstantes Niveau vor der Pumpe).

Drücken Sie → am Programmiergerät um zu wechseln auf

13.4.1 Dimension unit - Masseinheit

Dimension unit	Hier können Sie die gewünschte Einheit (mit Tasten
Bar	♥ und ♠) wählen bar, psi oder % für das 1. Fenster.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.5 Submenu Inverter – Untermenü Inverter

Submenu	Um ins Menü zu gelangen drücken Sie 🛡 um das
Inverter	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

Drücken Sie → am Programmiergerät um zu wechseln auf

13.5.1 Maximum Frequency – Maximum Frequenz

Max. Frequency 50.0 Hz	Mögliche Einstellung 40 und max. 70 Hz. Achtung: Einstellungen höher als 50 Hz können den Motor überlasten.
	Eine Einstellung von 10% über der Normalfrequenz hat eine Leistungserhöhung von 33% zur Folge!

Drücken Sie → am Programmiergerät um zu wechseln auf

13.5.2 Minimum Frequency – Minimum Frequenz

Min. Frequency
0.0 HzHier können Sie die Minimumfrequenz wählen.Achtung!: Wenn im Parameter Konfig. Fmin (siehe
Kapitel 13.5.4) die Einstellung F>Fmin gewählt wurde, stoppt die Pumpe nicht
automatisch, sondern läuft kontinuierlich mit Minimalfrequenz weiter!!! Möglichkeit der Überhitzung der Pumpe !!

Drücken Sie -> am Programmiergerät um zum nächsten Parameter zu wechseln

13.5.3 Boost - Motorstartspannung

B O O S T 5.0 % Der Startwert bestimmt den Kurs der U/f-Kurve.

Startspannung in % der Eingangsspannung.

Einstellungen von 0...25% der max. Ausgangsspannung sind möglich. Die Einstellungen sollten so gering als möglich sein, um eine Überhitzung des Motors zu vermeiden.

Drücken Sie 🗲 am Programmiergerät um zu wechseln auf

13.5.4 Operation of the minimum frequency – Funktion bei Betrieb mit Minimalfrequenz

$E \rightarrow Emin$ auf die eingestellte Minimum Frequenz (13.5.2)	Config. Fmin	Wenn Sie "F->0" gewählt haben, sinkt die Frequenz
	$F \Rightarrow Fmin$	auf die eingestellte Minimum Frequenz (13.5.2).

Dann läuft der Hydrovar für die eingestellte Zeit (13.5.5) und nach dieser Zeit schaltet der Hydrovar automatisch ab.

Mit der Auswahl "F->F_{min}" kann die Pumpe nicht unter der Minimumfrequenz laufen. Im "Controller, Actuator and Multicontroller Mode" wird die Pumpe nie unter der gewählten Minimum Frequenz laufen (Die Pumpe stoppt nur mit dem externen ON/Off oder im Falle eines Fehlers).

Drücken Sie → am Programmiergerät um zu wechseln auf

13.5.5 Delay time for Fmin – Verzögerungszeit für die Abschaltung bei Fmin

	Fmin Time	Die Pumpe läuft die eingestellte Zeit bei Minimum-
	0 s	frequenz, danach stoppt die Pumpe. Wenn CONFIG.
-	rain (siche Kersitel 12 F. 4) auf F. V. 0 aingestellt ist. Finatellher muischen 0 und 100a	

Fmin (siehe Kapitel 13.5.4) auf F \Rightarrow 0 eingestellt ist. Einstellbar zwischen 0 und 100s.

Um das Untermenü zu verlassen drücken Sie → länger als 3 Sekunden!

13.6 Submenu Controller – Untermenü Regelverhalten

Submenu	Um ins Menü zu gelangen drücken Sie $oldsymbol{\Psi}$ um das
Controller	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

13.6.1 Window - % - Fenster

 Window
 Dieser
 Wert
 bestimmt
 die
 max.
 Abweichung
 des

 5 %
 Ausgangsdruckes (Siehe Rampenfenster).

Mögliche Einstellung: zwischen 0% - 100% des Solldruckes.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.6.2 Ramp Hysteresis - Hysterese

Hysteresis	
80%	

Umschaltschwelle zwischen schneller und langsamer Rampe (Siehe Rampenfenster).

Mögliche Einstellung: zwischen 0%..100% des Solldruckes.

Drücken Sie 🗲 am Kontroller um zu wechseln auf

13.6.3 Fast acceleration time – Schnelle Hochlaufzeit

Die Einstellung bei Rampen 1, 2, 3, oder 4 beeinflussen die Kontrolle der Pumpe und sollten im Normalbetrieb möglichst nicht verändert werden. Mögliche Einstellung jeder Rampenzeit 0,05 – 1000 Sek.

Accel. HighEine zu schnelle Hochlaufzeit kann den Hydrovar4 Secbeim Starten überlasten.

Eine zu langsame Hochlaufzeit kann zu Druckeinbrüchen während des Normalbetriebes führen.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.6.4 Fast deceleration time – Schnelle Tieflaufzeit

Decel. High	Eine zu schnelle Tieflaufzeit kann während des Tief-
4 Sec	laufes des Hydrovars einen Fehler verursachen (Über
	spannung). Eine zu langsame Tieflaufzeit kann zu
	Überdrücken während des Normalbetriebes führen

Drücken Sie → am Programmiergerät um zu wechseln auf

13.6.5 Slow acceleration time – Langsame Hochlaufzeit

Accel. Low	
70 Sec	

Eine zu **Langsame** Hochlaufzeit kann bei Verbrauchsänderungen zu Druckeinbrüchen führen. Eine zu **Schnelle** Hochlaufzeit kann zu Schwingungen des Anlagendruckes und/oder zu einer Überstromschaltung der Regeleinheit führen.

Drücken Sie → am Kontroller um zu wechseln auf

13.6.6 Slow deceleration time – Langsame Tieflaufzeit

	Decel. Low	Eine zu Langsame Tieflaufzeit kann bei Verbrauchs-
	90 Sec	änderungen zu Druckschwankungen führen.
_		Eine zu Schnelle Tieflaufzeit kann zu Schwingungen
		führen.

Ramp Window - Rampenfenster

Drücken Sie 🗲 am Programmiergerät um zu wechseln auf

13.6.7 Compensation Frequency – Anhub Frequenz

Für die Regelung nach einer Anlagenkurve (Erhöhung des Solldrucks abhängig von Durchfluß oder Frequenz).

LIFT FREQUENCY	Einstellbar zwischen 6 Hz und der MAXIMAL Frequenz,	
30.0 Hz	diese Einstellung bestimmt ab welcher Frequenz der	
arliche Develdruck erhöht worden sell. Dies ist die Franzenz hei der die Dumpe am		

erforderliche Regeldruck erhöht werden soll. Dies ist die Frequenz bei der die Pumpe am eingestellten Solldruck und bei Durchfluß =0 arbeitet.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.6.8 Lift-Intensity – Anhub Intensität

LIFT – INTENS.Einstellbar von 0 bis 100% des verwendeten0.0 barDrucktransmitters.

Dieser Wert gibt an, um wieviel Prozent des Sollwertes der Regeldruck kontinuierlich, bis zum Erreichen der eingestellten Maximaldrehzahl (Maximalmenge) angehoben werden soll.

Figure: Lift-Intensity – Anhub Intensität

13.7 Submenu Multicontroller – Untermenü Multikontroller

Submenu	Um ins Menü zu gelangen drücken Sie 🕹 um das
Multicontroller	Menü zu verlassen drücken Sie → länger als 3 Sek.!

13.7.1 Lift Value – Anhub Wert

ACTU. VALUE INC.	Einstellbar zwischen 0 und 2,5 bar.
0.15 BAR	Dieser Wert, zusammen mit dem Absenk-Wer

(ACTUAL VALUE DECREASE) bestimmt die Erhöhung des Regeldruckes nach dem Starten einer Folgepumpe (siehe Beispiel in Kapitel 13.7.2)

Drücken Sie → am Kontroller um zu wechseln auf

13.7.2 Fall Value – Absenk Wert

Zum Einstellen des Regeldruckes für 1 bis 4 Pumpen

Actu. Value Dec.	Einstellbar zwischen 0 und 2,5 bar.
0.15 bar	Dieser Wert bestimmt den zulässigen Druckabfall,

bevor die nächste Folgepumpe starten soll. (*Start-Wert* = Sollwert – Absenkwert)

Funktionsbeispiel:

- 1) Pumpe 1 erreicht f_{max} (maximal Frequenz)
- 2) Anlagendruck fällt unter die Startschwelle
- (= Sollwert Absenkwert.) nächste Folgepumpe startet
- 3) Pumpe 2 startet automatisch
- 4) Der Regeldruck wird nach dem Start der Folgepumpe folgendermaßen neu kalkuliert :

Neuer Sollwert = Sollwert – Absenkwert + Anhubwert

Allgemein:

k ... Anzahl der aktiven Pumpen (k > 1)

- $P = P_{set} + (k-1)^{*}[Anhubwert Absenkwert]$
 - Anhubwert = Absenkwert \Rightarrow **Druck** bei Pumpenzuschaltung **konstant**
 - Anhubwert > Absenkwert \Rightarrow **Druck** bei Pumpenzuschaltung **steigt**
 - Anhubwert < Absenkwert ⇒ **Druck** bei Pumpenzuschaltung **sinkt**

Drücken Sie → am Programmiergerät um zu wechseln auf

13.7.3 Enable Seq. Ctl. – Freigebefrequenz für Folgepumpe

Enable Seq.	Ctl.
48 0 Hz	

Die Folgepumpe startet nur, wenn die Startschwelle erreicht ist (siehe Kapitel 13.7.2) <u>und</u> die

Hauptpumpe die programmierte Freigabefrequenz erreicht hat.

(Einstellbar von 0.0 Hz bis 70 Hz).

Wenn Sie einen Start der Folgepumpe verhindern wollen muß dieser Wert höher als die MAXIMAL FREQUENZ (siehe Kapitel 13.5.1) eingestellt werden.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.7.4 Switch Interval- Folge Zeit

Switch Interval
24 hoursIntervall für die Umreihung der Hauptpumpe um
gleichmäßige Betriebsstunden für alle Pumpen zu
erreichen. Einstellbar zwischen 0 und 250 Stunden.

Um das Untermenü zu verlassen drücken Sie 🗲 länger als 3 Sekunden!

13.8 Submenu Relay – Untermenü Relais

Submenu	Um ins Menü zu gelangen drücken Sie 🕹 um das
Relay	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

13.8.1 Relay Configuration- Relais Einstellungen

Relay Configu.	Mögliche Auswahl	∣mit Ѱ und ♠:
Simple Multicnt.	Simple Multicnt.	\Rightarrow z. Ansteuern einer Folgepumpe
	(simple multi-	mit konst. Drehzahl.
	controller)	(siehe Kapitel13.8.2 / 13.8.3.)
	Run Signalling	\Rightarrow Laufmeldung des Motors
	Error Signalling	\Rightarrow Fehlermeldung des Motors
		-

Achtung: Max. Kontaktbelastung 500mA / 125V AC

Drücken Sie → am Programmiergerät um zu wechseln auf

13.8.2 Start frequency of the slave pump - Freigabefrequenz

Slave-On Limit
50,0 HzHier können Sie die Freigabefrequenz einstellen bei der
die Folgepumpe starten soll, wenn im ParameterRelay configuration (siehe Kapitel 13.8.1) "simple multicontroller") gewählt wurde.
In diesem Fall läuft die Folgepumpe mit voller Frequenz und wird von der HYDROVAR-
Pumpe kontrolliert.

Drücken Sie 🗲 am Programmiergerät um zu wechseln auf

13.8.2 Stop frequency of the slave pump - Stopfrequenz

Slave-Off Limit
30.0 HzHier können Sie die Frequenz einstellen bei der die
Folgepumpe stoppen soll, wenn im ParameterRelay configuration (siehe Kapitel 13.8.1) "simple multicontroller" gewählt wird.

Um das Untermenü zu verlassen drücken Sie 🗲 länger als 3 Sekunden!

13.9 Submenu Sensor – Untermenü Sensor

Submenu	Um ins Menü zu gelangen drücken Sie 🕈 um das
Sensor	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

13.9.1 Sensor Adjust – Sensor Einstellung

SENSOR_ADJUST ? Out of range Nullabgleich der einzelnen Sensoren.

Out of range Anlage drucklos machen u.♥ + ↑ gleichzeitig drücken. Ein erfolgreicher Abgleich wird mit "adjusted" im Display angezeigt. Wenn kein Abgleich möglich ist, wird dies mit "out of range" im Display angezeigt (z. B wenn Druck im System ist)

Drücken Sie → am Programmiergerät um zu wechseln auf

13.9.2 SensorMax-Adjust- Einstellung des Messbereichs

SENSORMAX-ADJUST
0,5 – 4,5 VDer analoge Eingang (Terminal X2/2) ist vorbereitet für
ein Transmittersignal von 0,5 – 4,5VDC.

Wenn ein Transmitter mit einem anderen Signal verwendet wird, können Sie ein Eingangssignal von 0,5 – 2,5VDC wählen (zum Beispiel ein 4-20mA-Transmitter mit einem externen Widerstand von 125 Ohm/0,25W) mit den Tasten $\Psi + \uparrow$.

Um das Untermenü zu verlassen drücken Sie → länger als 3 Sekunden!

13.10 Submenu Test-Run- Untermenü Testlauf

Submenu	Um ins Menü zu gelangen drücken Sie 🛡 um das
Testrun	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

13.10.1 Start of manual test run- Manueller Testlauf

Start Test Run
 $\bigstar + \Psi$ Bei gleichzeitigem drücken von $\bigstar + \Psi$ wird ein
manueller Probelauf gestartet.

Der Hydrovar erhöht seine Ausgangsfrequenz bis zur Testfrequenz (siehe Kapitel 13.10.3) mit der schnellen Hochlaufzeit (Rampe 1) und stoppt dann wieder über die schnelle Tieflaufzeit (Rampe 2).

Drücken Sie → am Programmiergerät um zu wechseln auf

13.10.2 Sequence for automatic test run- Autom. Probelauf

Time Test	Run
100 h	

Einstellbar zwischen 1...100 Stunden.

Bei Probelauf läuft die Pumpe nach Ablauf der

eingestellten Zeit nach dem letzten Stop für 20 Sek. auf der in 13.10.3 eingestellten Frequenz. Deaktivierung d. Probelaufs: Einstellen von 0 Stunden, durch \uparrow und \checkmark . Der automatische Probelauf kann mit \uparrow und mit einstellen der gewünschten Stunden wieder aktiviert werden.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.10.3 Test Run: Frequency - Testfrequenz

Test Frequency	Frequenz für manuellen und automatischenTestlauf.
30.0 Hz	Einstellbar zwischen 0 Hz bis 70 Hz.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.10.4 Test Run: Boost – Motorstartspannung für Probelauf

BOOST Test Run	Startspannung in % der Eingangsspannung um ein
10.0 %.	Einstellbar zwischen 0% und 25%.

Um das Untermenü zu verlassen drücken Sie → *länger als 3 Sekunden!!*

13.11 Submenu Error – Untermenü Fehler

Submenu	Um ins Menü zu gelangen drücken Sie 🕹 um das
Error	Menü zu verlassen drücken Sie → länger als 3 Sek.!

13.11.1 Conveyor Limit - Förderschwelle

Conveyor Limit	Einstellbar zwischen 0 und 10 bar analogen
0.0 bar	Eingangssignal.

Um die Förderschwelle zu deaktivieren, Ψ drücken *bis " deactive" auf dem Display* erscheint oder 0 Bar.

Ein eingestellter Wert >0 muß innerhalb der in Parameter "ERROR DELAY" eingestellten Zeit erreicht werden.

Ist dies nicht der Fall, schaltet der Hydrovar ab und am Display wird die Meldung "ERROR WATER" (Wassermangel) angezeigt.

Drücken Sie → am Programmiergerät um zu wechseln au

13.11.2 Error Delay - Verzögerungszeit

Einstellbar zwischen 0...100 Sek.

<u>10 Sec.</u> Verzögerungszeit für die Abschaltung des Hydrovar bei Wassermangel (Terminal X2/6-X2/7) oder bei Unterschreitung der Förderschwelle (siehe Kapitel 13.11.1).

Um das Untermenü zu verlassen drücken Sie → länger als 3 Sekunden!!

13.12 Set Password – Einstellen des Passwortes

Set Password	
0066	

Error Delay

Das voreingestellte Paßwort kann, wenn gewünscht geändert werden mit \clubsuit und \clubsuit .

Drücken Sie → am Programmiergerät um zu wechseln auf

13.13 Default Settings - Werkseinstellungen

Default	Um die Werkseinstellungen zu laden, drücken Sie 🛧 + 🛡
↑ + ↓	gemeinsam, bis die Zeit abgelaufen ist (ca 5 Sek.)

Drücken Sie → am Kontroller um zu wechseln auf

13.14 Submenu Diagnosis – Untermenü Diagnose

Submenu	Um ins Menü zu gelangen drücken Sie 🛡 um das
Diagnosis	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

13.14.1 Pump Runtime - Betriebsstunden

Pump Runtime Zeigt die Betriebsstunden der Pumpe 0000 Std.

Drücken Sie → am Programmiergerät um zu wechseln auf

13.14.2 Pump Address – Pumpenadresse

Pump-Address 1

Dieses Fenster zeigt die Einstellung der Pumpenadresse (nur lesbar).

Drücken Sie → am Programmiergerät um zu wechseln auf

13.14.3 Error memory - Fehlerspeicher

Die letzten drei Fehler-Meldungen sind immer in einem internen Speicher abgelegt. Die Fehler Signale können nicht gelöscht werden!

Drücken Sie → am Programmiergerät um zu wechseln auf

13.14.4 Software Version

Software	In diesem Parameter ist die verwendete Software
CP – VOG: 004	Version des HYDROVAR zu finden.

Um das Untermenü zu verlassen drücken Sie→ *länger als 3 Sekunden!*

13.15 Set Password - Passworteinstellung

Password	Hier muss das geänderte Passwort bestätigt
О.К.	werden.

14 Controller menu – Einstellungen Programmiergerät

Um dieses Menü zu erreichen müssen Sie auf dem Programmiergerät länger als 3 Sekunden → drücken, wenn das

1	F	er	าร	te	r

Der aktuelle Druck [bar] und die aktuelle Ausgangsfrequenz [Hz] werden angezeigt.

angezeigt wird. Dann ändert sich das Display auf

Dann Drücken Sie 🗲 am Kontroller um zu wechseln auf

14.1 Controller menu Configuration – Kontroller Menü Einstellungen

Submenu	Um ins Menü zu gelangen drücken Sie 🕈 um das
Configuration	Menü zu verlassen drücken Sie 🗲 länger als 3 Sek.!

14.1.1 Automatic connection to the programming device –Autom. Verbindung zum Programmiergerät

Auto Connecting! Nur Wert für Programmiergerät !EnabledAuto connecting enabled: nach einstecken des

Programmiergerätes wird automatisch zum Inverter- menü gewechselt. Das Programmiergerät sucht nach voreingestellten Adressen und "SCAN CONNECTION" wird am Display angezeigt (siehe Kapitel 10.2).

Auto connecting wird gespeichert nach Verlassen des Untermenüs Configuration. *Auto connecting disabled:* kein automatischer Verbindungsaufbau mit der Pumpe (Adresse wählen)

Drücken Sie → am Programmiergerät um zu wechseln auf

14.1.2 Software Version des Programmiergeräts

Software: In Software: VOGREM-004 da

In der zweiten Zeile wird die Softwareversion und das Datum der Programmierung angezeigt.

Um das Untermenü zu verlassen drücken Sie → länger als 3 Sekunden!

14.2 Submenu address – Untermenü Pumpenadresse

Submenu	Um ins Menü zu gelangen drücken Sie 🕹 um das
Address	Menü zu verlassen drücken Sie → länger als 3 Sek.!

14.2.1 Change of pump address - Adressenwechsel

Address Change	Adressen von 01 bis 04 und auch 00 kann in diesem
00> 00 *	Parameter eingestellt werden. Um die Adresse zu

wechseln ist es nicht notwendig die Interface Verbindungen der einzelnen HYDROVAR zu unterbrechen.

Auf der linken Seite ist die Adresse des HYDROVARS gezeigt, den Sie ansprechen möchten (wählen Sie die Adresse durch drücken von \uparrow oder \blacklozenge). Auf der rechten Seite, können Sie dem HYDROVAR eine neue Adresse geben ebenfalls mit den Tasten \uparrow und \blacklozenge . Sie können nur eine Adresse verwenden, die in dieser Pumpengruppe noch nicht in Verwendung ist!

Um zwischen linker und rechter Seite zu wechseln drücken Sie \leftarrow oder \rightarrow . Der Stern zeigt die aktuell verwendete Seite.

Um die neu gewählte Adresse zu sichern drücken Sie beide Tasten (\leftarrow and \rightarrow) zusammen für 2 Sek. Wenn Sie erfolgreich waren erscheint die selbe Adresse auf beiden Seiten.

Um das Untermenü zu verlassen drücken Sie→ *länger als 3 Sekunden!*

15 Possible Error Messages - Mögliche Fehlermeldungen

15.1 Low Water - Wassermangel

XXX	Abh
Error Water	Übe

bhilfe: berprüfen Sie den Zulaufdruck oder den

Wasserstand im Zulaufbehälter!

Wenn der Zulaufdruckschalter wieder schließt oder das Niveau im Zulaufbehälter wieder ansteigt, startet der Hydrovar wieder von selbst.

Ist keine externe Wassermangelsicherung vorhanden (z.B. Umwälzanlagen"), müssen die Klemmen X2/6 und X2/7 kurzgeschlossen werden.

15.2 Overheating Motor - Übertemperatur – Motor

 XXX
 Mögliche Ursachen: ungenügende Kühlung

 Error-Mot-Temp
 (verschmutzte Kühlrippen) Außentemperatur

zu hoch, Motor überlastet. Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

15.3 Overvoltage - Überspannung

XXX	
Error-Overvolt	

Mögliche Ursachen: Netzspannung zu hoch, Spannungsspitzen durch Schaltungen von

großen Lasten am Netz, oder RAMPE 2 ist zu schnell!

Finden Sie die Ursache und setzen Sie Gegenmaßnahmen (z.B. Netzwerkfilter, RC-Elemente).

Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

15.4 Undervoltage - Unterspannung

XXX Error-Undervolt Mögliche Ursache:

Error-Undervolt Netzspannung zu niedrig, fehlende Phase am Eingang durch fehlerhafte Sicherung oder Phasenunsymmetrie.

Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

15.5 Overload - Überlast

XXX
Error Overload

Mögliche Ursache: Die **Pumpe ist blockiert!** Fremdkörper in der Pumpe, mechanische

Dichtung defekt, die Pumpe arbeitet in einem unzulässigen Bereich, oder **falsche Parametereinstellungen:** Rampe 1 zu schnell : siehe Kapitel 13.6.3 Maximumfrequenz zu hoch: siehe Kapitel 13.5.1 Motor-Startspannung zu niedrig: siehe Kapitel 13.5.13 Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der

Spannungsversorgung für >30 Sekunden quittiert werden.

15.6 Overheating of the heat sink - Überhitzung

XXX Error KK-Temp Mögliche Ursachen: verschmutzter Kühlkörper oder unzureichende Kühlung.

Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

15.7 Sensor fault – Sensor Fehler

XXX	Das analoge Eingangssignal wird überwacht.
Sensor Fault	Wenn das Signal unter 0.5VDC fällt, wird ein

Fehler angezeigt. Mögliche Ursache: Defekter Druckgeber oder Kabelbruch (beschädigtes Transmitterkabel) Schlechte Verbindung des Sensorkabels, Prüfen Sie den Druckgeber!

Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

15.8 Conveyor limit fault - Förderschwellenfehler

XXX	
Error Water	

Der Wert der programmierten Mindestförderschwelle ist nicht in der programmierten Zeit

erreicht worden (siehe Kapitel 13.11.1 und 13.11.2). Mögliche Ursache: gebrochenes Rohr vor oder nach der Pumpe, geschlossenes Ventil vor der Pumpe, Luft in der Pumpe.

Nachdem die Ursache beseitigt wurde, kann der Fehler durch Abschaltung der Spannungs-versorgung für >30 Sekunden quittiert werden.

15.9 Additional internal processor Error messages – Zusätzliche interne Prozessor Fehlermeldungen:

ERROR 1	:	EEPROM-Fehler (Fehlfunktion eines entsprechenden Datenblocks)
ERROR 2	:	Nicht in Verwendung
ERROR 3	:	Prozessor RAM Fehler
ERROR 4	:	Nicht in Verwendung
ERROR 5	:	EEPROM Fehler
ERROR 6	:	Watchdog Fehler
ERROR 7	:	Fehlerhafte Quarzfrequenz
ERROR 8	:	Programmfehler

Diese Fehlersignale können durch Abschaltung der Spannungsversorgung für >30 Sekunden quittiert werden.

Sollte das Fehlersignal nochmals auftreten, setzen Sie sich mit dem Kundenservice in Verbindung und geben Sie eine genaue Beschreibung des Fehlers.

16 Wartung

Die HYDROVAR-Regeleinheit benötigt keine spezielle Wartung. Jedoch sollten zeitweise der Kühlkörper und die Kühlrippen des Motors vom Staub befreit werden.

Für weitere Informationen wenden Sie sich an Ihren Kundendienst.

xylem

XYLEM WATER SOLUTIONS AUSTRIA GMBH Ernst-Vogel Strasse 2 2000 Stockerau Österreich Telefon: +43 (0) 2266 / 604 Telefax: +43 (0) 2266 / 65311 e-mail: info.austria@xyleminc.com web: www.xylemaustria.com

Änderungen, auch ohne vorherige Ankündigung, sind Xylem Water Solutions Austria GmbH jederzeit vorbehalten. © 2012 Xylem, Inc